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Throughout the 20th century, quantum mechanics was celebrated as the ultimate proof that modern science is
leaving behind deterministic mechanical materialism and admitted that it is dealing with non-material entities;
moreover, the notion that our reality takes place through being observed opens up to a subjectivist denial of
objective reality. Some quantum scientists themselves claimed that the only way to account for our entire universe...
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An example of non-Markovian quantum dynamics is considered in the framework of a geometrical (topological)
subordination approach. The specific property of the model is that it coincides exactly with the fractional diffusion
equation, which describes the geometric Brownian motion on combs. Both classical diffusion and quantum
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auser's intent. For example,
untruthful, toxic, or simpl In other words
not

In this paper,

‘models with user intent on a wide range of tasks by fine-tuning with human
feedback. 2 setof nd bbmitted
through 2

the desired model behavior, which we use to fine-tune GPT-3 using supervised
learning.

feedback. We call the resulting models lmm-aGPI‘ In human evaluations on
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Figure 1: Human evaluations of various models on the API prompt distribution, evaluated by how
often outputs from each model were preferred to those from the 17SB SFT modcl Our InstructGPT

models (PPO-ptx) as well as its variant trained without

(PPO) si

the GPT-3 baselines (GPT, GPT prompted); outputs from our 1.3B PPO-ptx model are preferred to
those from the 175B GPT-3. Error bars throughout the paper are 95% confidence intervals.

used for many recent large LMs—predicting the next token on a webpage from
different from the objective “follow the user’s instructions helpfully and safely” (Rac R
Brown et al., 2020; Fedus et al., 2021; Rae et al., 2021; Thoppilan et al., 2022). T

REVEE

the language modeling objective is misaligned. Averting these unintended behav e
important for language models that are deployed and used in hundreds of applicatic

‘We make progress on aligning language models by training them to act in accordanc  #INEIE

intention (Leike et al.; 2018). This encompasses both explicit intentions such as follo

and implicit intentions such as staying truthful, and not being biased, toxic, or otherwise harmful.

Using the language of Askell et al. (2021), we want language models to be helpful (they should

help the user solve their task), honest (they shouldn’t fabricate information or mislead the user), and

harmless (they should not cause physical, psychological, or social harm to people o the environment).
B3l

‘We elaborate on the evaluation of these criteria in Section[3.5]

‘We focus on fine-tuning approaches to aligning language models. Specifically, we use reinforcement
learning from human feedback (RLHF; Christiano et al., 2017; Stiennon et al., 2020) to fine-tune
GPT-3 to follow a broad class of written instructions (see Figure[2). This technique uses human
preferences as a reward signal to fine-tune our models. We first hire a team of 40 contractors to label

detaila) We then collect a dataget of human-written demaonstrationg of the desired ontnut hehavior

sy CRRBGHEY, 2 M TEAE h A s oh B I 25 45

Our models generalize to plﬂmof"luld-o\l " labelers that did nnl produce lny train-
ing data.  Held-out labelers ‘workers

raning data (seo Figaro ). In particular, according o held-out workers, i of oo IiGPT
‘models still greatly outperform the GPT-3 baselines. Thus, our InstructGPT models aren’t simply
overfitting t0 the preferences of our training labelers.

Public NLP datasets are not reflective our language models are used. In Figure
we also compare InstructGPT t0 our 758 GPT-3 s nc s on e FLAN (Wt o

2021) and TO (Sanh et al., 2021) datasets (see Appendix [D)for details). We find that these mbd:ls

perform bett PT-3, on par with GPT-3 with a well-chosen prompt, and worse than our SFT

baseline. Thi licates that 0t i iy i

API prompt distribution. i is partly i focus

performance is easily measured, QA, while our API

mostly (sbout 57%) open-ended generation tasks.

42 Results on public NLP datasets

¢ Truthful QA dataset, but significant i

MHIIIII:M ‘B
truthfulness. Interestngly, mm-wnanmmmmmym

3, but not bias.
our models on the RealToxicityPrompts dataset (Gehman et al., 2020) using human evaluations.

), InstructGPT models generate less toxic outputs than those from GPT-3

gres: RLHF

In Figure 25 ‘adding pretraining update (o our PPO fine-
tuning (PPO-ptx) mitigates performance regressions on public NLP datasets, and even surpasses
GPT-3 on HellaSwag. The performance of the PPO-ptx model sill lags behind GPT-3 on DROP,

‘We also find that mixing ... .. « than the simpler solution

of increasing the KL coefficient (Fig
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Public NLP datasets are not reflective of how our language models are used. In Figure.

‘we also compare InstructGPT o our 175B GPT-3 baselines fine-tuned on the FLAN (Wei et al.,
2021) and TO (Sanh et al., 2021 . We find
perform better than GPT-3, on par 3 with a well-c ‘prompt, and SFT
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fine-tuning procedure. In Figure 25 we show hat ading pretining updtes 1 our rro fine-
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ellaSwag. The performance of the PPO-pix model il hp behmd 'GP on BROP
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of meresing the KL coeficient (Figare

Our models generalize to the preferences of "held-out" labelers that did not produce any train-
ing data.  Held-out labelers have similar ranking preferences as workers who we used to produce
training data (see Figure [3). In particular, according to held-out workers, all of our InstructGPT
models still greatly outperform the GPT-3 baselines. Thus, our InstructGPT models arcn’t simply
overfitring to the preferences of our training labelers.

Public NLP datasets are not reflective of how our language models are us used. In Figure|
tructGPT to our 175B GPT-3 baselin

‘perform better than GPT-3, on par with GPT-3 with a well-chosen prompt, and worse than our SFT

baseline. This indicates that these datasets are not sufficiently diverse to improve performance on our

APl prompt dumuum We believe tisisparly because academic datases focus on tasks where
and QA, while our API di

Trosy (about 77%) apen-ended generation ks

42 Results on public NLP datasets
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InstructGPT shows small improvements in toxicity over GPT-: 3, butno (EEVEE
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Our results are in Figure[5¢) We find that, when instructed to pmdu== as EHEXE
(“respectful prompt”), InstructGPT models generate less toxic outputs

cconling (0 ine Perspective APL This advantage disappears when the resp 3130
Ca0 prompe’, We s siila esls when evaluaing using the Perspects

‘We can minimize performance regressions on public NLP datasets by sy vut s
fine-tuning procedure. ~In Figure 23] we show that adding pretraining updates to our PPO fine-
uning (PPO-ptx) miigates performince regrestions on puslic NLP dastscts, and even surpasses
GPT-3 on HellaSwag. The performance of the PPO-ptx model still lags behind GPT-3 on DROP,
SQUADV2, and translation; more work is needed 1o study and further eliminate these perfonnanee
regressions. We also find that mixing in ipdates performs better

of increasing the KL coefficient (Figure 36).

Public NLP datasets are not reflective of how our language models are used. In Figure|
‘we also compare InstructGPT to our 175B GPT-3 baselines fine-tuned on the FLAN (Wei et
2021) and TO (Sanh et al, 2021) datasets (see Appendix D) for details). We find that these models
perform betier than GPT-3, on par with GPT-3 with a well-chosen prompt, and worse than our SFT
baseline. This indicates that these datasets are not sufficiently diverse to improve performance on our
API prompt distribution. We believe this is partly because academic datasets focus on tasks where
performance is easily measured, like classification and QA, while our API distribution consists of
mostly (about 57%) open-ended generation tasks.

42 Results on public NLP datasets

InstructGPT

TruthfulQA dataset, but significa

ek £ 5 b Ganilif &
ruthfulness. Intrestingly, the exception is our 1.3B PPO-ptx model, which performs slightly worse

InstructGPT shows small improvements in toxicity over GPT-3, but no 19/
our models on the RealToxicltyrompts datasct (Cehman et al, 2020)
Our results are in Figure 5c; We find that, when instrcted o produce a5, ST
(“respectful prompt”), InstructGPT models generate less toxic outputs
according to the Perspective APL This advantage disappears when the resp /%24
(“no prompt”). We see similar results when evaluating using the Perspectit

IR
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tuning (PPO-ptx) rformance regressions on public ets, and even surpasses
GPT-3 on H:lllSwlg 'l"hg performance of the PPO-ptx model xIIII Ilgs b!hlnd Gl’l" 3 on DROP
SQUADY2, and translation; more work is needed to study and fu
Tegressions. We lso i that mixin i prerining updatc perfomms e ha the Smpler sotion
of increasing the KL coefficient (Figure[36).
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that the "machines” and "thinking" in this question were

difficultto define accurately, Turing asked and answered
himsel for 18 years, proposing the *imitation game”,
which was later called the *Turing test”. Turing may not
have thought that 70 years latr toda, arifcial
intelligence would affect human production and Ife so
profoundly, affecting the future and destiny of mankind so
profoundiy. We should follow the dirction pointed out by
Turing, revolve around the basic question of “Can
machines think?", keep pace with the times, move from
mathematical mechanization to cogritive automation, and

further focus on the following 10 aspects of thinking.
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high quality o reconstructed speech. However, it depends.
‘on the amount of speech data because ofthe speaker-
dependent model training method. I this paper, we study

‘speaker data. In our proposed method, a speaker-

speaker speech corpus. Then, the parameters of the

speaker-independent model are adaptively updated to

obtain the neural vocoder o the target speaker.In our

‘experimentswe compare local updating strategy with
the

method o the same training data. Experiments show that

the neural vocoder constructed by our proposed method

‘can achieve better reconstructed speech quality than
TRAIGHT, i o

subjective performance than speaker-dependent taining
with limited target speaker data.

Xt
Inrecent years, WaveNet-besed neural vocoder vocoders
‘ea-achieve based on WaveNet have demonstrated the
apacity to teconsiruct sneech vith high quelity auality.
‘However,their performance is contingent ugon the
volume of avallable reconstructed-speech-Howeverit

the speaker-dependent model training a2pr02ch. method:
In-this This peper; paper explores 3 we study-the training
method of for neural vocoders with that utizes limited
terget speaker data. Out ot proposed method;
‘methodology involves intally training a speaker-
independent WaveNet vocoder i-irsttrsined using a
mult-speaker speech corpus. Fhen; Subsequently, the
parameters of the tis speaker-independent model are
adaptively updated to obtein yicld the neural vocoder of
{or the target speaker.In our experimentswe.
‘experimental eompere comparisons, we juxtapose local
updating sireiegy siralcoies with global updating
strategy sirategies in adaptive training; (raining and
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